设为首页收藏本站

僚人家园

 找回密码
 注册

QQ登录

只需一步,快速开始

点击进入授权页面

只需一步,快速开始

扫一扫,访问微社区

搜索
12
返回列表 发新帖
楼主: 楚越DOCa
打印 上一主题 下一主题

环太平洋-壮族母系遗传研究(复旦大学 广西医科大学 耶鲁大学)

[复制链接]

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
21#
发表于 2017-11-25 08:06:52 |只看该作者
(请勿转载)

TN
6.7
6.7
20.0
3.3
3.3
6.7
3.3
3.3
3.3
10.0
13.3
16.7
3.3
TY
50.0
25.0
25.0
WG
12.5
6.3
25.0
6.3
6.3
18.8
6.3
6.3
12.5
WS
3.1
15.6
3.1
9.4
9.4
12.5
9.4
6.3
3.1
3.1
3.1
9.4
9.4
3.1


回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
22#
发表于 2017-11-25 08:07:51 |只看该作者
(请勿转载)

YR
6.7
6.7
13.3
6.7
13.3
6.7
6.7
20.0
6.7
6.7
6.7

F*16218: the subgroup under haplogroup F with 16218 derived allele. Un: haplogroup undetermined. 1 in.: single individual for the sample population.
F * 16218:单倍群F下带有16218个衍生等位基因的亚群。 Un:单倍群未定。 1 in:单个人作为样本人口。


回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
23#
发表于 2017-11-25 08:08:53 |只看该作者
(请勿转载)

MATERIALS AND METHODS

材料与方法

Blood samples of 774 individuals from 30 Daic populations across South China and Vietnam were collected with FTA cards (Whatman), covering almost all of the Daic populations in China. There are also 126 individuals from 13 AAs and one Sino-Tibetan population, bringing the total sample size to 900. All of the donors are unrelated and gave their consent to the study. The data from the populations studied is shown in Table 1.

采用FTA卡(Whatman)收集来自中国南方和越南的30个壮侗语族群(Daic)的774个个体的血液样本,覆盖中国几乎所有的壮侗语族群(Daic)群体。 还有来自13个南亚语系族群(AA)和一个汉藏人群的126人,使样本总数达到900人。所有的捐助者都是不相关的,并同意这项研究。表1列出了所研究人群的数据。

An mtDNA fragment containing the HVS-1 region was amplified by primers L15974 and H16488 (Yao et al., 2002a), and the purified PCR product was sequenced using the BigDye terminator cycle sequencing kit and an ABI 3100 genetic analyzer (Applied Biosystem). Primers were also designed for amplifying multiple fragments containing 12 RFLP polymorphisms in the coding regions, and most of the PCR products were digested by restriction enzymes: 9bp deletion, 10397 AluI, 10394 DdeI, 663 HaeIII, 5176 AluI, 4831 HhaI, 12406 HpaI, and 9824 HinfI (Kivisild et al., 2002; Yao et al., 2002a). The additional variations, 3010, 4715, 5417, and 10310, were geno- typed by directional sequencing or PCR-RFLP assay by engineering restriction sites in the primers (primer information and genotyping protocol for all the coding region variants are shown in Supplementary Table 1).

通过引物L15974和H16488(Yao等,2002年,a)扩增含有HVS-1区域的mtDNA片段,并使用BigDye终止子循环测序试剂盒和ABI 3100遗传分析仪(Applied Biosystem)对纯化的PCR产物进行测序。也设计引物以扩增编码区中含有12个RFLP多态性的多个片段,并且大多数PCR产物用限制性内切酶消化:9bp缺失,10397AluI,10394DdeI,663HaeIII,5176AluI,4831HhaI,12406HpaI, 和9824 HinfI(Kivisild等,2002年; Yao等,2002年,a)。 另外的变体3010,4715,5417和10310通过定向测序或PCR-RFLP测定通过引物中的工程限制性位点进行基因型分类(所有编码区变体的引物信息和基因分型方案见补充表1)。

The 464bp long HVS-1 sequences (16024-16488) were edited and aligned against the revised CRS (Andrews et al., 1999) using DNASTAR software (DNASTAR). All of the 900 HVS-1 sequences from 53 populations have been submitted to Genbank (Accession number: EF654716-EF655616).

使用DNASTAR软件(DNASTAR)对464bp长的HVS-1序列(16024-16488)进行编辑并与修订的CRS(Andrews等,1999年)比对。 来自53个群体的所有900个HVS-1序列已经提交给Genbank(登录号:EF654716-EF655616)。

Haplogroup affiliation of each mtDNA sequence was inferred by combined use of the HVS-1 motif and diagnostic variants in the coding regions following Kivisild et al. (2002) and Kong et al. (2003a). Median joining networks (Bandelt et al., 1999) were constructed by NETWORK software (www.fluxus-engineering.com) to investigate detailed lineage relationship within each haplogroup. Coalescence time and its standard error of the haplogroups were calculated by the methods developed by Forster et al. (1996) and Saillard et al. (2000), respectively. The reference data of other groups in East and Southeast Asia used in networks were obtained from the literature (Horai et al., 1996; Wen et al., 2003, 2004a,b, 2005; Qian et al., 2001; Yao and Zhang, 2002; Kivisild et al., 2002; Yao et al., 2002a,b, 2003, 2004; Tajima et al., 2003; Kong et al., 2003b), including that for the Daic, AAs, HMs, TAs, Sino-Tibetans, and some Altaic populations.

根据Kivisild等人(2002年)和Kong等人(2003年,a)的研究,通过在编码区中HVS-1基序和诊断变体的组合使用推断每个mtDNA序列的族群归属。中间连接网络(Bandelt等,1999年)是由NETWORK软件(www.fluxus-engineering.com)构建的,以研究每个单倍群内的详细的谱系关系。通过Forster等人(1996年)和Saillard等人 (2000年)开发的方法计算单倍群的聚并时间和标准误差。东亚和东南亚其他群体的参考数据来源于文献(Horai等,1996年; Wen等,2003年,2004年a,b,2005年; Qian等,2001年; Yao和Zhang ,2002年; Kivisild等,2002年; Yao等,2002年a,b,2003年,2004年; Tajima等,2003年; Kong等,2003年b),包括壮侗语族群(Daic),南亚语族群(AAs),苗瑶语族群(HMs),台湾原住民(TA), 汉藏语族群(Sino-Tibetans)和一些阿尔泰人(Altaic populations)。


回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
24#
发表于 2017-11-25 08:12:20 |只看该作者
(请勿转载)

RESULTS
结论

Distribution and specificity of haplogroups
单倍群的分布和特异性

Almost all of the samples were genotyped and their haplogroups were confirmed (Supplementary Table 2) (Table 2). The most common Daic haplogroups are B4a,F1a, M7b1, B5a, M7b*, M*, R9a, and R9b, in order of frequency, and the total percentage of these common haplogroups is 48.8%. In the remote AA populations, the most common haplogroups in order of frequency are F1a, M*, D*, F1b, N*, C, M7b*, M7b1, and F1a1a. This list is noticeably but unsurprisingly different from that of the Daic's. The percentage of the first three haplogroups for the AA populations alone totals 50.8%. The Daic's hap- logroup list is similar, however, to that of the HM's (B5a, B4a, M*, M7b*, C, B4b1, M7b1, F1a, B4*, and R9b, totaling 50.6%), and is based on these two Southern populations, the Daic and the HM (Wen et al., 2005), we can conclude that B, M7, F, and R are the most characteristically Southern haplogroups. Among Daic populations, the frequencies of these four Southern specific haplogroups total 66.4%, which is higher than the totals in either the AA population (48.9%) or the HM population (58.9%). Moreover, the frequency of these haplogroups is decreased in more northern populations, such as in the Han (40.8%), the more northern Tibeto-Burman (37.5%), and the northernmost Altaic (16.3%). These four haplogroups are, therefore, essential to the study of matrilineage in South China.

几乎所有的样本都进行了基因分型,并确认了它们的单倍群(补充表2)(表2)。最常见的壮侗语族群(Daic)单倍型依次为B4a,F1a,M7b1,B5a,M7b *,M *,R9a和R9b,这些常见单倍型的总比例为48.8%。在偏远的南亚语族群(AA)群体中,按频率次序,最常见的单倍群是F1a,M *,D *,F1b,N *,C,M7b *,M7b1和F1a1a。这个列表与壮侗语族群(Daic)的明显不同,但并不令人意外。仅南亚语族群(AA)群体的前三个单倍组的百分比总计为50.8%。 然而,基于壮侗语族群(Daic)和苗瑶语族群(HM)在南方的人口,壮侗语族群(Daic)的单倍群列表与苗瑶语族群(HM)(B5a,B4a,M *,M7b *,C,B4b1,M7b1,F1a,B4 *和R9b,共计50.6%)的列表相似(Wen 等,2005年),我们可以得出结论,B,M7,F和R是最具特征的南方单体群。在壮侗语族群(Daic)中,这四个南方特定单倍群的频率总和为66.4%,高于AA群体(48.9%)或HM群体(58.9%)。此外,在北部的汉族(40.8%),更北分布的藏缅族(37.5%)以及最北端的阿尔泰民族(16.3%),这些单倍群的频率有所下降。因此,这四个单倍群对于研究中国南方的母系遗传是至关重要的。

Network analysis of related groups
相关族群的遗传网络分析

To create networks in the Daic, AA, MP, HM, Sino- Tibetan, and Altaic populations, we used HVS-1 motifs (see Supplementary Table 2) from the haplogroups with high frequencies in South China (Fig. 2) as well as previously published haplogroup and HVS-1 data (Horai et al., 1996; Wen et al., 2003, 2004a,b, 2005; Qian et al., 2001; Yao and Zhang, 2002; Kivisild et al., 2002; Yao et al., 2002a,b, 2003, 2004; Tajima et al., 2003; Kong et al., 2003b). We marked each ethnic family in the network by color, but we separated the coastal Han, those from Shanghai to Guangxi, from the remaining population, taking into consideration that there may be a large number of Daic descendents in the coastal Southeastern Han populations, especially among the Southern specific hap- logroup ones.

为了在壮侗语族群(Daic),南亚语族群(AA),马来-波利尼西亚族群(MP),苗瑶语族群(HM),汉藏族群和阿尔泰族群中建立遗传网络,我们使用了来自中国南方地区高频率单倍群(见图2)的HVS-1基序(见补充表2) 以及先前发表的单倍群和HVS-1数据(Horai等,1996年; Wen等,2003年,2004年 a,b,2005年; Qian等,2001年; Yao和Zhang,2002年; Kivisild等,2002年; Yao等,2002年a,b,2003年,2004年; Tajima等,2003年; Kong等,2003年b)。我们用颜色标注了遗传网络中的每一个民族,但是我们把沿海的汉族,上海到广西的汉族与其余的人口分开,考虑到可能有大量的壮侗语族群后裔在东南沿海地区汉族内部,特别是在南方特有的单倍群中。



本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册  

回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
25#
发表于 2017-11-25 08:14:38 |只看该作者
(请勿转载)

Fig. 2. Networks of the mtDNA haplogroups that are in high-frequency in South China derived from East Asian population data. Triangles represent the networks’ roots. Dark green nodes represent Daic individuals (G: Gelao; Q: Hlai; K: Kam-Sui; D: Tai; U: Unclassified); orange: Austro-Asiatic (A); amaranthine: Hmong-Mien (M); blue: Taiwanese (T) and Malayo-Polynesian (P); light green: southeast coastal Han (E); lime green: Han-Mandarin (S: South; N: North); incarnadine: Tibeto-Burman (B); light indigotic: Altaic (C). The blue background marks the ethnic specific sub-haplogroups. [Color figure can be viewed in the online issue, which is available at [www.interscience.wiley.com]

图2来源于东亚人口数据的中国南方地区高频率mtDNA单倍型遗传网络。 三角形代表遗传网络的源头。 深绿色的节点代表壮侗语族群(Daic)个体(G:Gelao; Q:Hlai; K:Kam-Sui; D:Tai; U:未分类); 橙色:南亚语族群(A); 紫红:苗瑶语族群(M); 蓝色:台湾原住民(T)和马来-波利尼西亚人(P); 淡绿色:东南沿海汉族(E); 柠檬绿:汉语官话族群(S:南; N:北); 粉红:藏缅族群(B); 淡靛蓝:阿尔泰族群(C)。 蓝色背景标志着种族特定的亚单倍群。 [彩色图片可以在网上查看,即可在www.interscience.wiley.com上查看]

The networks contain large nodes with primary, secondary, and sometimes further branching representing shared haplogroups among ethnic families. The networks clearly show greater differences in haplogroups between Northern and Southern populations than between ethnicities. For example, some branches contain a variety of unrelated ethnic families who are geographically close. However, some haplogroups, such as M7b and B4-16140 (subhaplogroup under B4 with 16140 derived allele), remain approximately specific to one ethnic group, in this case the Daic. Han samples from the Southeast coastal zone are the closest to the Daic samples phylogenetically, sharing the most haplotypes. Although linkages, which is to say, haplogroup similarities, between the Daic and the HM are also common, there are still fewer linkages than between the Southeastern Han and Daic. The linkages between the Daic and the Han exist mostly in smaller branches, however; those between the Daic and the HM are more primary. Differentiation among the subfamilies of Daic is difficult. The Tai subfamily is especially varied, indicating a history of strong population expansion.

遗传网络包含大型的节点,拥有一级,二级,有时甚至是更进一步的分支,代表了民族之间共享的单倍群。这些网络清楚地显示出北方和南方人群之间的单倍群差异比民族差异更大。例如,一些分支包含地理上接近的各种不相关的民族。然而,一些单倍群,例如M7b和B4-16140(B4下带有16140个衍生等位基因的亚类群),大致保持特定存在于一个族群,即壮侗语族群(Daic)。来自东南沿海地区的汉族样本在系统发生学上与壮侗语族群(Daic)样本最为接近,共享最多的单倍型。尽管壮侗语族群(Daic)和苗瑶语族群(HM)之间的联系,即单倍群相似之处也是常见的,但与东南汉族与壮侗语族群(Daic)之间的联系相比仍然较少。壮侗语族群(Daic)和汉族之间的联系大多存在于较小的分支上,那些在壮侗语族群(Daic)和苗瑶语族群(HM)之间的联系更加原始。 壮侗语族群(Daic)亚族之间的分化是很困难的。台语亚族群特别多样,表现出人口强劲增长的历史。

Time estimate
时间推算

We conducted time estimates of the approximate age of several relatively high-frequency branches in specific haplogroups of the South China populations. The results have a standard deviation of about 1/3. R is a primary haplogroup that branches off about 70,000 years ago, while branches for B, F, and M7 are each around 50,000 years old. Most other ancillary branches are 40,000 years old. There is not much contradiction for the corresponding relationship between the phylogenesis of haplogroup and branch age. For the age of each branch and the phylogenic tree refer to Figure 3.

我们对中国南方地区特定人群中几个较高频率分支的近似年龄进行了时间估计。结果有大约1/3的标准偏差。R是大约7万年前分支的主要单倍群,而B,F和M7的分支每个都在5万年左右。大多数其他辅助分支的年龄是4万年。 单倍群系统发生与分支年龄的对应关系并不矛盾。对于每个分支和系统发育树的年龄参考图3。



本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册  

回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
26#
发表于 2017-11-25 08:16:53 |只看该作者
(请勿转载)

Fig. 3. The ages of the mtDNA lineages in South China and the climatic variation during this period. Sub-haplogroups written in black boxes are ethnic specific. Three different backgrounds indicate three periods of ethnicity development; the darkest background represents the ethnic differentiation period. The temperature change is show on the left. All of the ethnic specific sub-haplogroups appeared in the last stadial of the Wiirm Glacial.

图3中国南方mtDNA谱系的年龄和气候变化。用黑方块标注的亚单倍群具有种族特异性。三种不同的背景表明三个民族发展阶段; 最黑暗的背景代表了民族分化的时期。温度变化显示在左边。所有的种族特异性亚单倍群都出现在Wiirm冰川期的最后一个冰段。

In the root nodes at the very base of the network, the HM and the Daic are not differentiable. However, in the first ancillary branches where differentiations begin to occur, the groupings are extremely HM or Daic specific, with no more than one outlier per branch. All of the hap- logroups with ethnic distinctions differentiated within the last 30,000 years, and most differentiated within the last 20,000. The largest ethnic specific haplogroups became distinguishable no more than 10,000 ago, which is also about when the most terminal ends of the networks differentiated. The population fragmentation in the terminal ends is obvious. According to the time table in Figure 3, the mtDNA lineage history generally falls into three phases, the first around 55-25 kybp, the second from 25-9 kybp, and the third from 9 kybp present.

在网络最底层的根节点,苗瑶语族群(HM)和壮侗语族群(Daic)是不可区分的。 然而,在第一个辅助分支开始发生分化时,这些分组非常具有苗瑶语族群(HM)或壮侗语族群(Daic)特征,每个分支不超过一个异常值。 所有具有民族差异的遗传组都在最近3万年内才有所区别,在最近2万年内差异最大。最大的种族特定单倍群在不超过1万年前才可以区分,这也是大多数遗传网络终端的差异时期。终端的人口分化是明显的。根据图3中的时间表,mtDNA谱系历史一般分为三个阶段,第一个在5.5-2.5 万年前,第二个从2.5-0.9 万年前,第三个从0.9万年前到现在。

DISCUSSION
讨论

The Daic contain most Southern specific mtDNA haplotypes
壮侗语系族群含有大部分南方特有的mtDNA单倍型

mtDNA haplogroup distribution in South and North China is obviously unequal (Yao et al., 2002a; Kong et al., 2003a; Wen et al., 2004a,b, 2005), and the hap- logroups B, M7, F, R, which are common in South China, are clearly of Southern origin. These Southern hap- logroups exist in high frequencies in the Daic, HM, and AA populations, indicating that these three ethnic families are native to South China. The Daic are acknowledged to be the descendants of the Baiyue, a famous, ancient ethnic family, which according to Chinese historical records lived in the coastal zone that now exists between Shanghai and Hanoi 2,000 years ago. This family, in turn, descended from the most powerful ethnic family in South China 8-2,000 years ago (Song, 1991). Their ancestors had comparatively advanced cultures (Song, 1991) (Hemudu Culture, Liangzhu Culture, etc) in these areas during prehistory, and they may have lived in South China for at least 30,000 years. When the Han began to expand southward in 2 kybp (Wen et al., 2004a), a large number of the Baiyue were assimilated by the Han. Others migrated westwards to become today's Daic populations. Thus, we can find a high proportion of mtDNA haplogroups similar to the Daic in southeastern Han populations.

中国南方和北方地区的mtDNA单倍型群体分布明显不相同(Yao等,2002年a; Kong等,2003年a; Wen 等,2004年a,b,2005年),而单倍群B,M7,F,R ,在中国南方很常见,显然是南方的起源的。在壮侗语族群(Daic),苗瑶语族群(HM)和南亚语族群(AA)群体中,这些南部单倍群群以高频率存在,表明这三个族群是原产于中国南方的。壮侗语族群(Daic)被公认为是著名的古代民族百越的后裔,根据中国的历史记载,这个族群两千年前生活在上海和河内之间的沿海地区。这个族群也就是8000-2000年前中国南方最强大的民族(Song,1991年)。他们的祖先在史前时期在这些地区有比较先进的文化(Song,1991年)(河姆渡文化,良渚文化等),他们可能在中国南方地区至少有3万年的生活史。当汉族开始向南扩张(Wen等,2004年a)时,大量的百越人被汉族同化。其他人向西迁移,成为今天的壮侗语族群(Daic)人口。因此,我们可以发现汉族东南部人群中与壮侗语族群(Daic)类似的高比例线粒体单倍群。

The Daic population has been shown to have a prominent place in population studies of South China, and ancient DNA from archaeological sites in the southeastern coastal zone can be used to better trace the footprints of the Daic's ancestors. These studies could reveal much of the population history in the entire Southern region.

壮侗语族群(Daic)人口在中国南方地区的人口研究中显示出了显著的地位,东南沿海地区考古遗址中的古代DNA可以用来更好地追溯壮侗语族群(Daic)祖先的遗迹。这些研究可以揭示整个南方地区的大部分人口历史。

Among the Daic, the HM, and the AA groups, the Southern haplogroup frequency is highest in the Daic and lowest in the AAs, although the AAs are nevertheless regarded as a native Southwestern population. The overall frequencies of B, M7, F, R are high in the Southeast but become lower in the populations to the northwest. We therefore conclude that the Daic, the HM, and the AA haplogroups are Southeast specific rather than South China specific.

在壮侗语族群(Daic),苗瑶语族群(HM)和南亚语族群(AA)中,南部单倍群频率在壮侗语族群(Daic)中最高,在南亚语族群(AA)中最低,尽管南亚语族群(AA)仍被认为是西南地区的本地人。东南部的B,M7,F,R总体频率较高,西北部则较低。 因此,我们得出结论,壮侗语族群(Daic),苗瑶语族群(HM)和南亚语族群(AA)单倍群是东南特异性的,而不是中国南方特有的。

One explanation why these Southern specific haplogroups seem to gather in the Southeast might be that the AA population in Southwest China was affected by TB returning from the North, thus reducing much of the Southern specificity. However, the Han and the TB populations share a geographic origin and were indistinguishable before their southward migration, so any affect the TB population may have had on the AA should be relatively equal to the effect the Northern Han had on the Daic. Noticeable differences between the AA and the Daic should therefore not occur, but they do. Another explanation may be that because modern humans entered South China by more than one route and because the few original populations in South China were very small, independent genetic drift would have taken place in the populations of East and West transmigrants. Southern specific haplogroups then randomly became plentiful in the East while there were relatively few in the West. It is possible that we, therefore, find many fewer southern haplogroups in the Northern populations because they arose from the Western populations, and the difference in frequencies of Southern specificity is traceable to this day.

为什么似乎这些南方特定的单倍群聚集在东南地区,一个解释可能是中国西南地区的南亚语族群(AA)人群受到从北方返回的藏缅族(TB)的影响,因此降低了大部分的南方特异性。然而,汉族和藏缅族(TB)人群在南迁前是共有地理起源的,难以区分的,所以任何藏缅族(TB)人群对南亚语族群(AA)人群的影响都应该与北方汉对壮侗语族群(Daic)的影响相当。南亚语族群(AA)和壮侗语族群(Daic)之间的显著差异因此不应该发生,但事实却是这样。另一种解释可能是因为现代人类通过一条以上的路线进入中国南方,由于中国南方地区的原始人口很少,所以在东,西移民的人口中就会发生独立的遗传漂变。南方特定的单倍群随后在东部随机变得丰富,而在西部则相对较少。因此,我们有可能在北方族群中发现少得多的南方单倍群,因为它们起源于西部族群,南方特异性的频率差异可追溯至今天。


回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
27#
发表于 2017-11-25 08:19:19 |只看该作者
(请勿转载)

History of modern East Asian's entry into South China
现代东亚人进入中国南部的历史

Because the four main haplogroups (B, M7, F, R) are all around 50,000 years old, the ancestor groups of modern East Asians likely differentiated at that time when the original mutations were formed. However, these ancestors still had probably not settled in East Asia at that point. The genetic data must be compared to other anthropological evidence to give an estimate for the time of the modern East Asians' entry into South China. According to palaeoanthropological evidence, this must have taken place more than 30 kybp. As a result, the migration should have taken place in the period between 50 and 30 kybp, which is consistent with the research on the East Asian Y chromosome (Jin and Su, 2000). After the first settlement of modern East Asians in South China, there was a long pause before the diversification of populations occurred.

由于四种主要的单倍型群(B,M7,F,R)都在5万年左右,所以现代东亚人的祖先群体在原始突变形成时可能发生了分化。但是,这些祖先在这个时候可能还没有定居在东亚。遗传数据必须与其他人类学证据相比较,以估计现代东亚人进入中国南方的时间。根据古人类学的证据,这一定发生在超过3万年前。因此,迁移应在5-3万年间进行,这与东亚Y染色体的研究一致(Jin 和 Su,2000年)。在中国南方地区现代东亚人第一次定居之后,人口分化发生之前有一个很长的停顿时期。

Population fragmentation
人群的分化

Basing on our research, the fragmentation of Southern Chinese populations began around 20 kybp, when ethnically specific haplogroups were formed. Low population density, which allowed all of the original migrants to remain in the southernmost part of China, may be one reason that the population did not differentiate earlier or upon their arrival. Population growth around 20 kybp may then have caused the subsequent differentiation. Inmixing between groups, however, was still quite common. Therefore mtDNA haplogroups, even some of those branching later than 20, 000 years ago, were still found in a wide range of ethnic groups. In fact, the populations may well have diverged geographically before 20 kybp, but the high frequency of inmixing may have homogenized the population's haplotypes. However, after about 20 kybp, the genetic exchange was almost cut off, either by natural or social factors or a mixture of the two. No specific social cause is known, but a natural disaster in the form of the peak of a glacial age may well have been the cause of the sudden end of genetic inmixing (Fig. 3, Shi et al., 1989).

在我们的研究基础上,中国南方人群的分化始于约2万年前,当时形成了种族特异性单倍群。人口密度低,使所有原来的移民都能够留在中国最南端,这可能是造成人群没有紧接着他们到达,更早的分化的原因之一。2万年前左右的人口增长可能导致了随后的人群分化。然而,群体之间的混合还是相当普遍的。因此,线粒体DNA单倍群,甚至一些分支晚于2万年的单倍群,仍然广泛的存在于各族群中。事实上,在2万年前,人口在地理上可能已经发生了分歧,但是高频混合可能已经使群体的单倍型同质化。然而,在约2万年前以后,遗传交换几乎被切断,无论是自然因素还是社会因素,或是两者的混合。没有已知的具体的社会原因,但冰川高峰期的自然灾害很可能是基因混合突然结束的原因(图3,Shi等,1989年)。

The freezing weather very likely not only reduced communication between populations but also may have altered their conditions of survival. The original modern East Asian was probably forced to move to different areas segregated by the cordilleras (Fig. 1), and this segregation was apt to spur the gradual shaping of the diversity between populations afterwards. The differentiation was culturally magnified over 10,000 years concomitant with ever less genetic communication, and the presently observed diversity of populations, represented by the Daic, the HM, and the AA of South China, was finally formed. Two most important archaeological cultures, Hemudu and Daxi, formed in the region of the Daic and the HM, respectively, around 8 kybp. Based on mtDNA data, population mixing has never fully stopped, so the differences that exist among the AA, HM, and Daic are still increasing, albeit very slowly. Unsurprisingly, then, the groups closest geographically are also comparatively close in mtDNA haplotype data. This interchange not only takes place among Southern groups, but also occurs between Southern and Northern groups and is likely more frequent between the Northern groups moving southwards and the Southern aboriginal groups already there.

寒冷的天气很可能不仅减少了人们之间的交流,而且可能改变了他们的生存条件。最初的现代东亚人可能被迫迁移到由山脉隔离的不同地区(图1),而这种隔离往往会促使人口之间多样性的逐渐形成。这种差异在文化上被放大了1万多年,伴随着更少的基因交流,最终形成了目前中国南方以Daic,HM和AA为代表的人口多样性。两个最重要的考古学文化,河姆渡和大溪,分别形成于Daic和HM地区,大约在八千年前。基于mtDNA数据,种群混合从来没有完全停止过,所以AA,HM和Daic之间的差异仍然在增加,尽管非常缓慢。不出所料,那么地理上最接近的组在mtDNA单倍型数据上也相对接近。这种交流不仅发生在南方群体之间,而且也发生在南方和北方群体之间,在向南迁徙的北方群体和南方原住民群体之间可能更为频繁。

Much information can be obtained about the original settling of South China and the subsequent differentiations of its populations using mtDNA polymorphisms. However, mtDNA only shows the matrilineal genetic history of South China. The genetic information to be gleaned from South Chinese Y-chromosomes might reflect a very different genetic structure, and is, therefore, a vital complement to mitochondria research.

可以通过mtDNA多态性研究获得关于中国南方地区原始定居及随后族群分化的很多信息。 但线粒体DNA仅显示了中国南方地区的母系遗传史。从中国南方Y染色体收集的遗传信息可能反映了一个非常不同的遗传结构,因此是线粒体研究的重要补充。

ACKNOWLEDGMENTS
致谢

We thank all of the donors for making this work possible. The Ethnic Affairs Committee of Guangxi Zhuang Autonomous Region, Institute of Ethnology in Guizhou, Vietnam Hue Medical College, Xishuangbanna Prefecture Committee of C.C.Youth League, Wenshan Prefecture Committee of C.C.Youth League, Research Society of Hainan Ancient Migrants, and Mr Shi Shi of Chongqing Teacher's University offered help in sample collection. Dr. Angelika Hofmann of Yale University revised the paper and gave important suggestions on the scientific writing.

我们感谢使这项工作成为可能的所有捐助者。 广西壮族自治区民族事务委员会,贵州民族学研究所,越南顺化医学院,西双版纳州共青团委员会,文山州共青团委员会,海南古代移民研究会和重庆师范大学的Shi Shi先生在样本采集方面提供了帮助。耶鲁大学的Angelika Hofmann博士对这篇论文进行了修改,并就科学写作提出了重要的建议。


回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
28#
发表于 2017-11-25 08:20:55 |只看该作者
(请勿转载)

LITERATURE CITED
文献引用

Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147.
Andrews RM,Kubacka I,Chinnery PF,Lightowlers RN,Turnbull DM,Howell N. 1999. 剑桥人类线粒体DNA参考序列的再分析与修订。《自然▪基因》(Nature Genetics) 23期:147页。

Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37-48.
Bandelt HJ,Forster P,Rohl A. 1999.推断种内系统发育的中间连接网络。《分子生物学与进化》(Molecular Biology and Evolution) 16期:37-48页。

Bellwood PA, James JF, Barrell T. 1995. The Austronesians: historical and comparative perspectives. Canberra. Department of Anthropology, Research School of Pacific and Asian Studies, Australian National University.
Bellwood PA,James JF,Barrell T. 1995.南岛人:历史和比较视角。堪培拉。澳大利亚国立大学太平洋和亚洲研究学院人类学系。

Diamond JM. 1988. Express train to Polynesia. Nature 336: 307-308.
Diamond JM. 1988. 特快列车到波利尼西亚。《自然》336期:307-308页。

Forster P, Harding R, Torroni A, Bandelt H-J. 1996. Origin and evolution of Native American mtDNA variation: a reappraisal. Am J Hum Genet 59:935-945.
Forster P,Harding R,Torroni A,Bandelt H-J. 1996. 美洲原住民线粒体DNA变异的起源和演化:重新评估。《美国人类遗传学杂志》(American Journal of Human Genetics)59期:935-945页.

Grimes BF. 2002. Ethnologue: languages of the world, 14th ed. Dallas: International Academic Bookstore.
Grimes BF. 2002. 民族学:世界的语言,第14版。达拉斯:国际学术书店。

Horai S, Murayama K, Hayasaka K, Matsubayashi S, Hattori Y, Fucharoen G, Harihara S, Park KS, Omoto K, Pan IH. 1996. mtDNA polymorphism in East Asian populations, with special reference to the peopling of Japan. Am J Hum Genet 59:579-590.
Horai S,Murayama K,Hayasaka K,Matsubayashi S,Hattori Y,Fucharoen G,Harihara S,Park KS,Omoto K,Pan IH. 1996. 东亚人群中的mtDNA多态性,特别是日本人的mtDNA多态性。《美国人类遗传学杂志》(American Journal of Human Genetics)59期:579-590页。

Jin L, Su B. 2000. Natives or immigrants: origin and migrations of modern humans in East Asia. Nat Rev Genet 1:126-133.
Jin L,Su B. 2000.土著或移民:东亚现代人的起源和迁徙。 《自然遗传学评论》(Nature Reviews Genetics)1期:126-133页。

Kivisild T, Tolk H-V, Parik J, Wang Y, Papiha SS, Bandelt H-J, Villems R. 2002. The emerging limbs and twigs of the East Asian mtDNA tree. Mol Biol Evol 19:1737-1751.
Kivisild T, Tolk H-V, Parik J, Wang Y, Papiha SS, Bandelt H-J, Villems R. 2002. 东亚mtDNA遗传树新出现的分枝。《分子生物学与进化》(Molecular Biology and Evolution)19期:1737-1751页.

Kong QP, Yao YG, Sun C, Bandelt HJ, Zhu CL, Zhang YP. 2003a. Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet 73:671-676.
Kong QP,Yao YG,Sun C,Bandelt HJ,Zhu CL,Zhang YP. 2003a. 从完整序列推断东亚线粒体DNA谱系的系统发生情况。《美国人类遗传学杂志》(American Journal of Human Genetics)73期:671-676页。

Kong QP, Yao YG, Liu M, Shen SP, Chen C, Zhu CL, Palanich- amy MG, Zhang YP. 2003b. Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum Genet 113:391-405.
Kong QP,Yao YG,Liu M,Shen SP,Chen C,Zhu CL,Palanich-amy MG,Zhang YP. 2003b. 中国北方五个民族的线粒体DNA序列多态性。《人类遗传学》(Human Genetics)113期:391-405页。

Qian YP, Chu ZT, Dai Q, Wei CD, Chu JY, Tajima A, Horai S. 2001. Mitochondrial DNA polymorphisms in Yunnan nationalities in China. J Hum Genet 46:211-220.
Qian YP, Chu ZT, Dai Q, Wei CD, Chu JY, Tajima A, Horai S. 2001. 中国云南民族线粒体DNA多态性。《人类遗传学杂志》(Journal of Human Genetics)46期:211-220页.

Saillard J, Forster P, Lynnerup N, Bandelt H-J, N0rby S. 2000. mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718-726.
Saillard J,Forster P,Lynnerup N,Bandelt H-J,N0rby S. 2000.格陵兰爱斯基摩人的mtDNA变异:白令人扩张的边界。 《人类遗传学杂志》(Journal of Human Genetics)67期:718-726页。

Shi YF, Cui ZJ, Li JJ. 1989. Quaternary glacier in eastern China and the climate fluctuation. Beijing: Science Press.
Shi YF, Cui ZJ, Li JJ. 1989. 中国东部第四纪冰川与气候波动。北京:科学出版社。

Shriver MD, Kittles RA. 2004. Genetic ancestry and the search for personalized genetic histories. Nat Rev Genet 5:611-618.
Shriver MD, Kittles RA. 2004. 遗传世系和寻找个性化的遗传史。《自然遗传学评论》(Nature Reviews Genetics)5期:611-618页.

Song SH. 1991. Bai-Yue. Changchun: Jilin Education Press.
Song SH. 1991. 百越。长春:吉林教育出版社

Su B, Xiao J, Underhill P, Deka R, Zhang W, Akey J, Huang W, Shen D, Lu D, Luo J, Chu J, Tan J, Shen P, Davis R, Cavalli- Sforza LL, Chakraborty R, Xiong M, Du R, Oefner P, Chen Z, Jin L. 1999. Y chromosome evidence for a northward migration of modern humans in East Asia during the last Ice Age. Am J Hum Genet 65:1718-1724.
Su B, Xiao J, Underhill P, Deka R, Zhang W, Akey J, Huang W, Shen D, Lu D, Luo J, Chu J, Tan J, Shen P, Davis R, Cavalli- Sforza LL, Chakraborty R, Xiong M, Du R, Oefner P, Chen Z, Jin L. 1999. Y染色体证据证明了在上一个冰河时代,东亚现代人向北迁移。《美国人类遗传学杂志》(American Journal of Human Genetics)65期:1718-1724页.

Su B, Xiao C, Deka R, Seielstad MT, Kangwanpong D, Xiao J, Lu D, Underhill P, Cavalli-Sforza LL, Chakraborty R, Jin L 2000. Y chromosome haplotypes reveal prehistorical migrations to the Himalayas. Hum Genet 107:582-590.
Su B, Xiao C, Deka R, Seielstad MT, Kangwanpong D, Xiao J, Lu D, Underhill P, Cavalli-Sforza LL, Chakraborty R, Jin L 2000. Y染色体单体型揭示了向喜马拉雅山的史前迁移。《人类遗传学》(Human Genetics)107期:582-590页.

Tajima A, Sun CS, Pan IH, Ishida T, Saitou N, Horai S. 2003. Mitochondrial DNA polymorphisms in nine aboriginal groups of Taiwan: implications for the population history of aboriginal Taiwanese. Hum Genet 113:24-33.
Tajima A, Sun CS, Pan IH, Ishida T, Saitou N, Horai S. 2003. 台湾九个原住民群体的线粒体DNA多态性:对原住民台湾人口历史的影响。《人类遗传学》(Human Genetics)113期:24-33页.

Wen B, Shi H, Ren L, Xi H, Li K, Zhang W, Su B, Si S, Jin L, Xiao C. 2003. The origin of Mosuo people as revealed by mtDNA and Y chromosome variation. Sci China C Life Sci 33:375-384.
Wen B, Shi H, Ren L, Xi H, Li K, Zhang W, Su B, Si S, Jin L, Xiao C. 2003. 由mtDNA和Y染色体变异揭示的摩梭人起源。《中国科学▪C类▪生命科学》(Science in China Series C Life Sciences)

Wen B, Li H, Lu DR, Song XF, Zhang F, He YG, Li F, Gao Y, Mao XY, Zhang L, Qian J, Tan JZ, Jin JZ, Huang W, Deka R, Su B, Chakraborty R, Jin L. 2004a. Genetic evidence supports demic diffusion of Han culture. Nature 431:302-305.
Wen B, Li H, Lu DR, Song XF, Zhang F, He YG, Li F, Gao Y, Mao XY, Zhang L, Qian J, Tan JZ, Jin JZ, Huang W, Deka R, Su B, Chakraborty R, Jin L. 2004a. 遗传证据支持汉族文化的扩散。《自然》431期:302-305页.

Wen B, Xie XH, Gao S, Li H, Shi H, Song XF, Qian TZ, Xiao CJ, Jin JZ, Su B, Lu DR, Chakraborty R, Jin L. 2004b. Analyses of genetic structure of Tibeto-Burman populations reveals sex-based admixture in southern Tibeto-Burmans. Am J Hum Genet 74:856-865.
Wen B, Xie XH, Gao S, Li H, Shi H, Song XF, Qian TZ, Xiao CJ, Jin JZ, Su B, Lu DR, Chakraborty R, Jin L. 2004b. 藏缅族群的遗传结构分析揭示了藏缅族群南部的基于性的人群混合情况。《美国人类遗传学杂志》(American Journal of Human Genetics)74期:856-865页.

Wen B, Li H, Gao S, Mao XY, Gao Y, Li F, Zhang F, He YG, Dong YL, Zhang YJ, Huang WJ, Jin JZ, Xiao CJ, Lu DR, Deka R, Chakraborty R, Su B, Jin L. 2005. Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages. Mol Biol Evol 22:1-10.
Wen B, Li H, Gao S, Mao XY, Gao Y, Li F, Zhang F, He YG, Dong YL, Zhang YJ, Huang WJ, Jin JZ, Xiao CJ, Lu DR, Deka R, Chakraborty R, Su B, Jin L. 2005. 从mtDNA谱系揭示的东亚苗瑶语族群的遗传结构。《分子生物学与进化》(Molecular Biology and Evolution)22期:1-10页.

Wu RC. 1959. Human fossils found in Liujiang Guangxi. Acta Anthropolagica Sinica 1:97-104.
Wu RC. 1959. 广西柳江发现的人类化石。中国人类学报1期:97-104页.

Yao YG, Zhang YP. 2002. Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. J Hum Genet 47:311-318.
Yao YG, Zhang YP. 2002. 云南省四个民族mtDNA变异的系统地理学分析:新数据和重新评估。《人类遗传学杂志》(Journal of Human Genetics)47期:311-318页.

Yao YG, Kong QP, Bandelt H-J, Kivisild T, Zhuang YP. 2002a. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet 70:635-651.
Yao YG, Kong QP, Bandelt H-J, Kivisild T, Zhuang YP. 2002a. 汉族人群线粒体DNA的系统地理分化。《美国人类遗传学杂志》(American Journal of Human Genetics)70期:635-651页.

Yao YG, Nie L, Harpending H, Fu YX, Yuan ZG, Zhang YP. 2002b. Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. Am J Phys Anthropol 118:63-76.
Yao YG, Nie L, Harpending H, Fu YX, Yuan ZG, Zhang YP. 2002b. 中国民族种群遗传关系的线粒体DNA多样性分析。《美国体质人类学杂志》(American Journal of Physical Anthropology)118期:63-76页.



回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
29#
发表于 2017-11-25 08:21:43 |只看该作者

(请勿转载)

Yao YG, Kong QP, Man XY, Bandelt HJ, Zhang YP. 2003. Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA. Mol Biol Evol 20:214-219.
Yao YG, Kong QP, Man XY, Bandelt HJ, Zhang YP. 2003. 重建中国的进化史:关于古代DNA推断的一个警告。《分子生物学与进化》(Molecular Biology and Evolution)20期:214-219页.

Yao YG, Kong QP, Wang CY, Zhu CL, Zhang YP. 2004. Different matrilineal contributions to genetic structure of ethnic groups in the silk road region in china. Mol Biol Evol 21:2265-2280.
Yao YG, Kong QP, Wang CY, Zhu CL, Zhang YP. 2004. 中国丝绸之路地区少数民族遗传结构种的母系遗传区分。《分子生物学与进化》(Molecular Biology and Evolution)21期:2265-2280页.

Zhang GZ. 1987. Archaeology on the coast of Southeast China and origin of Austronesian. Southern ethnic archaeology 1. Chengdu: Sichuan University Press.
Zhang GZ. 1987. 中国东南沿海的考古及南岛语民族的起源。《南方民族考古学》(Southern ethnic archaeology)1期,成都:四川大学出版社。


回复

使用道具 举报

26

主题

8

听众

283

积分

石精灵

Rank: 3Rank: 3Rank: 3

最后登录
2019-10-27
注册时间
2015-3-22
30#
发表于 2017-11-26 21:33:12 |只看该作者
长见识了·····

http://ttjgs.com/  天天讲故事网,好听的广西少数民族故事网
回复

使用道具 举报

833

主题

9

听众

5万

积分

超级版主

Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13Rank: 13

最后登录
2024-7-10
注册时间
2002-7-6
31#
发表于 2017-11-27 07:12:03 |只看该作者
楼主辛苦了。

点评

楚越DOCa  嘿嘿,希望有用,父系母系的壮族遗传文章现在都有了  详情 回复 发表于 2017-11-27 20:02
来自安卓客户端来自安卓客户端
社 会 的 主 体——人口,  社会存在的空间——自然环境,  社会联系的纽带——文化
回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
32#
发表于 2017-11-27 20:02:07 |只看该作者
沙南曼森 发表于 2017-11-27 07:12
楼主辛苦了。

嘿嘿,希望有用,父系母系的壮族遗传文章现在都有了

回复

使用道具 举报

14

主题

2

听众

143

积分

土精灵

Rank: 2Rank: 2

最后登录
2018-12-6
注册时间
2016-12-19
33#
发表于 2017-12-8 20:55:28 |只看该作者
本帖最后由 楚越DOCa 于 2017-12-8 22:06 编辑

亚瑟王与圆桌骑士的故事(转载

导读:很久以前,魔王给亚瑟王出了道题,他必须在一年内回答出:女人最渴望得到什么?如果答对了,他就可以活下去,否则在这一年的最后一天,他就得死:“女人最想得到什么?”

大家议论纷纷,金钱、爱情、美貌、权势……但亚瑟王都觉得不对。时限眼看就到了,有人告诉亚瑟王在城里的女巫一定知道答案。亚瑟王无奈,就带了他最好的朋友——圆桌骑士去请教女巫。女巫如众人所说的一样。

女巫说:“如果要我说出答案,必须先答应我一个条件。”女巫的条件是要那位最英俊、智慧的圆桌骑士娶她为妻。亚瑟王绝对不同意他最好的朋友娶这样一个又老又丑的女巫。

但圆桌骑士却说,为了亚瑟王的宝贵生命,他愿意娶女巫为妻。于是女巫就告诉亚瑟王,女人最渴望的是掌握自己的命运。魔王认为亚瑟王的回答很正确,因此解除了对他的咒语,亚瑟王也履行自己的承诺——为圆桌骑士和女巫举办婚礼。婚礼上,人人都惋惜最英俊的男子竟娶了这样一个丑老太婆,但圆桌骑士却泰然处之,没有表现出对女巫的任何一点厌恶。

晚上圆桌骑士进入洞房,却看见一个美如天仙的少女。原来女巫有两个化身:一个是丑陋的巫婆,另一个是美丽的少女。女巫告诉圆桌骑士,现在圆桌骑士有选择的权利:希望她的妻子白天是美丽的少女呢?还是晚上是?如果白天是,那么圆桌骑士在朋友面前会非常荣耀,受到人们的艳羡。但晚上又如何面对一个丑陋的老妇,而且还要与她同床共枕?如果晚上是,与美丽的妻子屏烛相对将是人生的最大欢乐。但白天他如何与一个丑老太婆手挽手出现在众人的面前?

——如果你是圆桌骑士会怎么选择呢?

圆桌骑士回答:“你的命运由你自己来决定!”他没有忘记,女人最渴望掌握自己的命运。

结果女巫幸福的哭了“我爱你,我选择白天晚上都美丽!”


回复

使用道具 举报

34

主题

1

听众

1940

积分

榕树精灵

Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9

最后登录
2020-5-14
注册时间
2002-5-21
34#
发表于 2019-7-9 20:41:11 |只看该作者
我的母系是M7c1a

————浪子钢————
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册  

允许回帖同步到新浪微博  

Archiver|手机版|壮族在线    

GMT+8, 2025-1-22 22:57 , Processed in 0.153895 second(s), 47 queries .

Powered by Discuz! X2.5

© 2001-2012 Comsenz Inc.

回顶部